If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+17x-90=0
a = 19; b = 17; c = -90;
Δ = b2-4ac
Δ = 172-4·19·(-90)
Δ = 7129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{7129}}{2*19}=\frac{-17-\sqrt{7129}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{7129}}{2*19}=\frac{-17+\sqrt{7129}}{38} $
| 4z/9-9=-6 | | 17+4x+2=1-5x | | F=1.8(k-237.15)+32 | | b+20=2b-18 | | 16b+5=12b+17 | | 6^(x-1)=10 | | 6^x-1=10 | | 16s-4=9s+3 | | 10-w=189 | | y-9.36=1.96 | | -2-1/6-y=2 | | (2x+4)/(3x-4)=2 | | (2x+4)/(3x-4)=0 | | 1/3x-¼=1/4x+⅛ | | 8u2=32 | | -2-1/6-y=1 | | 15x^2+x-4=0 | | (x^2-x-56)/(x^2-16x+64)=0 | | 7x+24=45 | | (7x+1)x2+100=-x²+57 | | 15x+7=9x+25 | | X3-5x2+4x+1=0 | | 2.1x+39.4=1.4-7.4x | | Y=2x-90 | | 3x=10=-17 | | 5+2p-4=8p+6-5p | | 13x=11-2x | | 3(u-2)+1=4/4 | | 6m+9=27m= | | 42×x=x×42=42 | | 3j+6=-12 | | 8x+14=10x+3 |